Subtemporal Approach for the Treatment of Ruptured and Unruptured Distal Basilar Artery Aneurysms: Is There a Contemporary Use?

Operative Neurosurgery 27:581–596, 2024

Distal basilar artery aneurysms (DBAs) are high-risk lesions for which endovascular treatment is preferred because of their deep location, yet indications for open clipping nonetheless remain. The subtemporal approach allows for early proximal control and direct visualization of critical posterior perforating arteries, especially for posterior-projecting aneurysms. Our objective was to describe our clinical experience with the subtemporal approach for clipping DBAs in the evolving endovascular era.

METHODS: This was a retrospective, single-institution case series of patients with DBAs treated with microsurgery over a 21-year period (2002-2023). Demographic, clinical, and surgical data were collected for analysis.

RESULTS: Twenty-seven patients underwent clipping of 11 ruptured and 16 unruptured DBAs with a subtemporal approach (24 female; mean age 53 years). Ten patients had expanded craniotomies for treatment of additional aneurysms. The aneurysm occlusion rate was 100%. Good neurological outcomes as defined by the modified Rankin Scale score ≤2 and Glasgow Outcome Scale score ≥4 were achieved in 21/27 patients (78%). Two patients died before hospital discharge, one from vasospasm-induced strokes and another from an intraoperative myocardial infarction.

CONCLUSION: These results demonstrate that microsurgical clip ligation of DBAs using the subtemporal approach remains a viable option for complex lesions not amenable to endovascular management.

How Accurate Is Frameless Fiducial—Free Deep Brain Stimulation?

Operative Neurosurgery 27:431–439, 2024

Frameless deep brain stimulation (DBS) offers advantages in terms of patient comfort and reduced operative time. However, the need for bony fiducial markers for localization remains a drawback due to the time-consuming and uncomfortable procedure. An alternative localization method involves the direct tracking of an intraoperative 3-dimensional scanner. This study aims to assess the accuracy of the NexFrame frameless DBS system in conjunction with the O-Arm (Medtronic Inc.), both with and without fiducial markers.

METHODS: The locations of 100 DBS leads were determined, with 50 cases using fiducial-free localization and 50 involving fiducial markers. The coordinates were compared with the expected intraoperative targets. Absolute errors in the X, Y, and Z coordinates (ΔX, ΔY, and ΔZ) were calculated, along with the vector error (Euclidean) (vector error square root Δx 2 + Δy 2 + Δz 2 ).

RESULTS: The vector error averaged 1.61 ± 0.49 mm (right) and 1.52 ± 0.60 mm (left) for the group without fiducial bone markers and 1.66 ± 0.69 (right) and 1.44 ± 0.65 mm (left) for the other cohort (P = .76 right; P = .67 left). Absolute errors in the X, Y, and Z coordinates for the fiducial-free group were 0.88 ± 0.55, 0.79 ± 0.45, and 0.79 ± 0.57 mm (right) and 0.72 ± 0.37, 0.78 ± 0.56, and 0.77 ± 0.71 mm (left). For the group with fiducial markers, these errors were 0.87 ± 0.72, 0.92 ± 0.39, and 0.86 ± 0.50 mm (right) and 0.75 ± 0.33, 0.80 ± 0.51, and 0.73 ± 0.64 mm (left) with no statistically significant difference.

CONCLUSION: Our analysis of the accuracy of NexFrame DBS, both with and without fiducial markers, using an intraoperative navigable cone-beam computed tomography, demonstrates that both techniques provide sufficient and equivalent 3-dimensional accuracy.

Benefits of stereotactic radiosurgical anterior capsulotomy for obsessive-compulsive disorder: a meta-analysis

J Neurosurg 141:394–405, 2024

Anterior capsulotomy (AC) is a therapeutic option for patients with severe, treatment-resistant obsessive-compulsive disorder (OCD). The procedure can be performed via multiple techniques, with stereotactic radiosurgery (SRS) gaining popularity because of its minimally invasive nature. The risk-benefit profile of AC performed specifically with SRS has not been well characterized. Therefore, the primary objective of this study was to characterize outcomes following stereotactic radiosurgical AC in OCD patients.

METHODS Studies assessing mean Yale-Brown Obsessive Compulsive Scale (Y-BOCS) scores before and after stereotactic radiosurgical AC for OCD were included in this analysis. Inverse-variance fixed-effect modeling was used for pooling, and random-effects estimate of the ratio of means and standard mean differences were calculated at 6 months, 12 months, and the last follow-up for Y-BOCS scores, as well as the last follow-up for the Beck Depression Inventory (BDI)/BDI-II scores. A generalized linear mixed model was used to generate fixed- and random-effects models for categorical outcomes. Univariate random-effects meta-regression was used to evaluate associations between postoperative Y-BOCS scores and study covariates. Adverse events were summed across studies. Publication bias was assessed with Begg’s test.

RESULTS Eleven studies with 180 patients were eligible for inclusion. The mean Y-BOCS score decreased from 33.28 to 17.45 at the last-follow up (p < 0.001). Sixty percent of patients were classified as responders and 10% as partial responders, 18% experienced remission, and 4% had worsened Y-BOCS scores. The degree of improvement in the Y-BOCS score correlated with time since surgery (p = 0.046). In the random-effects model, the mean BDI at the last follow-up was not significantly different from that preoperatively. However, in an analysis performed with available paired pre- and postoperative BDI/BDI-II scores, there was significant improvement in the BDI/BDI-II scores postoperatively. Adverse events numbered 235, with headaches, weight change, mood changes, worsened depression/anxiety, and apathy occurring most commonly.

CONCLUSIONS Stereotactic radiosurgical AC is an effective technique for treating OCD. Its efficacy is similar to that of AC performed via other lesioning techniques.

Ventral amygdalofugal pathway as an integrated surgically important network

J Neurosurg 141:540–554, 2024

The ventral amygdalofugal pathway (VAFP) provides afferent and efferent connections to the amygdala and spans along some of the frequently traversed intra-axial surgical corridors as a dominant fiber bundle. This study aimed to reveal the frequently overlooked VAFP fibers by examining their courses and connections to the basal forebrain, septal region, hypothalamus, thalamus, tegmentum, and brainstem.

METHODS Ten postmortem human brains were used to display the characteristics of the VAFP, and fiber dissection results were compared with those of tractography.

RESULTS From anterior to posterior, the VAFP was separated into 5 different portions: 1) amygdala–substantia innominata; 2) amygdaloseptal (diagonal band of Broca); 3) amygdalo-thalamic; 4) amygdalo-hypothalamic, intermingling with the medial forebrain bundle and extending to the bed nucleus of stria terminalis; and 5) amygdalotegmental. The results of fiber dissections were confirmed with findings obtained from diffusion tensor tractography.

CONCLUSIONS This study supports the concept that interconnected forebrain, diencephalic, mesencephalic, and brainstem connections of the VAFP form an integrated surgically important network. The fiber dissection findings also provide the neuroanatomical basis for VAFP segmentation, which may help neurosurgeons better appreciate the complex microsurgical anatomy of the amygdalar connections. Amygdala–substantia innominata and amygdalotegmental connections are demonstrated for the first time and clarified within the structure of the VAFP.

Topographical anatomy of the subthalamic region with special interest in the human medial forebrain bundle

J Neurosurg 141:570–580, 2024

The medial forebrain bundle (MFB) is a novel promising deep brain stimulation (DBS) target in severe affective disorders that courses through the subthalamic region according to tractography studies. Its potential therapeutic role arose in connection with the development of hypomania during stimulation of the subthalamic nucleus (STN) in Parkinson’s disease, offering an alternative explanation for the occurrence of this side effect. However, until now its course exclusively described by tractography had not yet been confirmed by any anatomical method. The aim of this study was to fill this gap as well as to provide a detailed description of the fiber tracts surrounding the STN to facilitate a better understanding of the background of side effects occurring during STN DBS.

METHODS Ten human cadaveric brains (20 hemispheres) and 100 healthy subjects (200 hemispheres) from the S500 Release of the Human Connectome Project were involved in this study. Nineteen hemispheres were dissected according to Klingler’s method. One additional hemisphere was prepared for histological examinations to validate the macroscopical results and stained with neurofibril silver impregnation according to Krutsay. The authors also aimed to reconstruct the MFB using tractography and correlated the results with their dissections and histological findings.

RESULTS The white matter connections coursing through the subthalamic region were successfully dissected. The ansa lenticularis, lenticular fasciculus, thalamic fasciculus, ipsi- and contralateral cerebellar fibers, and medial lemniscus were revealed as closely related fiber tracts to the STN. However, the existence of a distinct fiber bundle corresponding to the MFB described by tractography could not be identified. Using tractography, the authors showed that the depiction of the streamlines representing the MFB was also strongly dependent on the threshold parameters.

CONCLUSIONS According to this study’s findings, the streamlines of the MFB described by tractography arise from the limitations of the diffusion-weighted MRI fiber tracking method and actually correspond to subthalamic fiber bundles, especially the ansa lenticularis and lenticular fasciculus, which erroneously continue in the anterior limb of the internal capsule, toward the prefrontal cortex.

Percutaneous thermal radiofrequency rhizotomy of L2–S1 spinal nerve roots in children with cerebral palsy

Neurosurg Focus 56(6):E7, 2024

This study presents the results of an evaluation of the effectiveness of percutaneous thermal radiofrequency (RF) ablation of spinal nerve roots to reduce spasticity and improve motor function in children with cerebral palsy (CP).

METHODS A retrospective analysis was conducted on the surgical treatment outcomes of 26 pediatric patients with severe CP (Gross Motor Function Classification System levels IV–V). The assessment protocol included muscle tone assessment using the modified Ashworth scale (MAS), evaluation of passive and active range of motion, gait video recording, and locomotor status evaluation using the Gross Motor Function Measure (GMFM)–88 scale. Thermal RF rhizotomy (ablation of spinal nerve roots) was performed on all patients at the L2–S1 levels at 70°C for 90 seconds. The statistical data analysis was conducted using the t-test and Mann-Whitney U-test. A p value < 0.05 was considered statistically significant.

RESULTS Before the operation, the average level of spasticity in the lower-limb muscles of all patients was 3.0 ± 0.2 according to the MAS. In the early postoperative period, the spasticity level in all examined muscle groups significantly decreased to a mean of 1.14 ± 0.15 (p < 0.001). In the long-term postoperative period, the spasticity level in the examined muscle groups averaged 1.49 ± 0.17 points on the MAS (p < 0.001 compared to baseline, p = 0.0416 compared to the early postoperative period). Despite the marked reduction of spasticity in the lower limbs, no significant change in locomotor status according to the GMFM-88 scale was observed in the selected category of patients. In the long-term period, during the control examination of patients, the GMFM-88 level increased on average by 3.6% ± 1.4% (from 22.2% ± 3.1% to 25.8% ± 3.6%).

CONCLUSIONS The findings of this study offer preliminary yet compelling evidence that RF ablation of spinal nerve roots can lead to a significant and enduring decrease in muscle tone among children with severe spastic CP. Further studies and longer-term data of the impact on functionality and quality of life of patients with CP after spinal root RF ablation are needed.

Neuroprotective Effects of Artificial Cerebrospinal Fluid: Analysis of Brainstem Auditory–Evoked Potential Monitoring During Microvascular Decompression in 117 Consecutive Patients

Neurosurgery 94:1088–1094, 2024

BACKGROUND AND OBJECTIVES: To study the efficacy of irrigation with artificial cerebrospinal fluid (aCSF) for protection of cranial nerves during surgery; the time required for recovery of brainstem auditory–evoked potentials (BAEPs) that would reflect cochlear function was analyzed in comparison with that for saline irrigation.

METHODS: This retrospective study included 117 consecutive patients (95 women, mean age 51.5 ± 11.4 year) who underwent microvascular decompression for hemifacial spasm. During surgery, BAEPs were monitored to avoid damage to the auditory pathways. When a delayed latency of >1 ms or a decrease in amplitude of >50% was detected in BAEP wave V, surgical maneuvers were halted, and the operative field was irrigated with saline or aCSF. Saline was used for irrigation in 58 patients and aCSF in the other 59. The time required for BAEP recovery at the first halt in each patient was analyzed, and the results were compared between the groups.

RESULTS: Surgical procedures were interrupted because of BAEP latency delays or decreases in amplitude in 51 of the patients in the saline group and 54 in the aCSF group. In both groups, the latencies and amplitudes recovered significantly with time and both recovered earlier after aCSF irrigation than after saline irrigation. Hearing outcome was not significantly different between 2 groups.

CONCLUSION: aCSF is effective for protection of cochlear nerve and promotes recovery from transient dysfunction during surgery. The protective effect may be attributed to multiple factors including conditioned pH, electrolyte composition, glucose, and microelements, such as magnesium and phosphate.

Nonenhancing motor eloquent gliomas: navigated transcranial magnetic stimulation oncobiological signature

J Neurosurg 140:909–919, 2024

Preoperative grading of nonenhancing motor eloquent gliomas is hampered by a lack of specific imaging surrogates. Tumor grading is crucial for the informed consent discussion before tumor resection. In this paper, the authors hypothesized that navigated transcranial magnetic stimulation (nTMS)–derived metrics could provide significant information to distinguish between high- and low-grade motor eloquent gliomas that present as nonenhancing tumors and therefore contribute to improving patient counseling, timing of treatment, preoperative planning, and intraoperative strategies.

METHODS The authors conducted a retrospective single-center cohort study of patients admitted for tumor surgery between January 2018 and April 2022 with a nonenhancing motor eloquent glioma and preoperative bilateral nTMS mapping. nTMS data including resting motor threshold (RMT), interhemispheric RMT ratio (iRMTr), Cortical Excitability Score (CES), area and volume of cortical activation, and motor evoked potential (MEP) characteristics were obtained and integrated with demographic and clinical data.

RESULTS Thirty patients met the inclusion criteria, and 10 healthy participants were recruited for comparison. Seizures were the most common presenting symptom (25 patients) and WHO grade 3 the most common tumor grade (21 patients). The area and volume of functional cortical activation of both the abductor pollicis brevis and first dorsal interosseous muscles were decreased in healthy participants compared with patients with WHO grade 3 glioma (p < 0.05). An abnormal iRMTr for the lower limbs (16.7% [1/6] WHO grade 2, 76.2% [16/21] WHO grade 3, 100% [3/3] WHO grade 4; p = 0.015) and a higher CES (maximal abnormal CES: 0% [0/6] WHO grade 2, 38% [8/21] WHO grade 3, 66.7% [2/3] WHO grade 4; p = 0.010) were associated with the prediction of high-grade lesions. A total of 7280 MEPs were analyzed. A significant increase in the amplitude and a significant decrease in latency in the MEPs for the first dorsal interosseous and abductor digiti minimi muscles (p < 0.0001) were identified in healthy participants compared with WHO grade 3 glioma patients.

CONCLUSIONS Nonenhancing motor eloquent gliomas have a different impact on both anatomical and functional reorganization of motor areas according to their WHO grading.

Neuronal Encoding of Speech Features in the Human Thalamus in Parkinson’s Disease and Essential Tremor Patients

Neurosurgery 94:307–316, 2024

The human thalamus is known, from stimulation studies and functional imaging, to participate in high-level language tasks. The goal of this study is to find whether and how speech features, in particular, vowel phonemes, are encoded in the neuronal activity of the thalamus, and specifically of the left ventralis intermediate nucleus (Vim), during speech production, perception, and imagery.

METHODS: In this cross-sectional study, we intraoperatively recorded single neuron activity in the left Vim of eight neurosurgical patients with Parkinson’s disease (PD) (n = 4) or essential tremor (n = 4) undergoing implantation of deep brain stimulation (n = 3) or radiofrequency lesioning (n = 5) while patients articulated the five monophthongal vowel sounds.

RESULTS: In this article, we report that single neurons in the left Vim encode individual vowel phonemes mainly during speech production but also during perception and imagery. They mainly use one of two encoding schemes: broad or sharp tuning, with a similar percentage of units each. Sinusoidal tuning has been demonstrated in almost half of the broadly tuned units. Patients with PD had a lower percentage of speech-related units in each aspect of speech (production, perception, and imagery), a significantly lower percentage of broadly tuned units, and significantly lower median firing rates during speech production and perception, but significantly higher rates during imagery, than patients with essential tremor.

CONCLUSION: The results suggest that the left Vim uses mixed encoding schemes for speech features. Our findings explain, at the single neuron level, why deep brain stimulation and radiofrequency lesioning of the left Vim are likely to cause speech side effects. Moreover, they may indicate that speech-related units in the left Vim of patients with PD may be degraded even in the subclinical phase.

Use of differential stimulation of the nucleus accumbens and anterior limb of the internal capsule to improve outcomes of obsessive-compulsive disorder

J Neurosurg 139:1376–1385, 2023

Personalized stimulation is key to optimizing the outcomes of deep brain stimulation (DBS) for refractory obsessive-compulsive disorder (OCD). However, the contacts in a single conventional electrode cannot be programmed independently, which may affect the therapeutic efficacy of DBS for OCD. Therefore, a novel designed electrode and implantable pulse generator (IPG) that could achieve differential stimulation parameters for different contacts was implanted into the nucleus accumbens (NAc) and anterior limb of the internal capsule (ALIC) of a cohort of patients with OCD.

METHODS Thirteen consecutive patients underwent bilateral DBS of the NAc-ALIC between January 2016 and May 2021. Differential stimulation of the NAc-ALIC was applied at initial activation. Primary effectiveness was assessed on the basis of change in scores on the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) from baseline to 6-month follow-up. Full-response was defined as a 35% decrease in Y-BOCS score. Secondary effectiveness measures were the Hamilton Anxiety Rating Scale (HAMA) and Hamilton Depression Rating Scale (HAMD). The local field potential of bilateral NAcALIC was recorded in 4 patients who were reimplanted with a sensing IPG after battery depletion of the previous IPG.

RESULTS The Y-BOCS, HAMA, and HAMD scores decreased remarkably during the first 6 months of DBS. Ten of 13 patients were categorized as responders (76.9%). Differential stimulation of the NAc-ALIC was favorable to optimization of the stimulation parameters by increasing the parameter configurations. Power spectral density analysis revealed pronounced delta-alpha frequency activity in the NAc-ALIC. Phase-amplitude coupling of the NAc-ALIC showed that strong coupling is present between the phase of delta-theta and broadband gamma amplitude.

CONCLUSIONS These preliminary findings indicate that differential stimulation of the NAc-ALIC can improve the efficacy of DBS for OCD.

Stereotactic robot‑assisted MRI‑guided laser interstitial thermal therapy thalamotomy for medically intractable Parkinson’s disease tremor

Acta Neurochirurgica (2023) 165:1453–1460

Medically intractable Parkinson’s disease (PD) tremor is a common difficult clinical situation with major impact on patient’s quality of life (QOL). Deep brain stimulation (DBS) is an effective therapy but is not an option for many patients. Less invasive lesional brain surgery procedures, such as thalamotomy, have proven to be effective in these indications. Here, we describe the technical nuances and advantages of stereotactic robot-assisted MRI-guided laser interstitial thermal therapy (MRIg-LITT) thalamotomy for medically intractable PD tremor.

Method We describe 2 patients with medically intractable PD tremor treated with stereotactic robot-assisted MRIg-LITT thalamotomy performed under general anesthesia with intraoperative electrophysiological testing. Pre and postoperative tremor scores were assessed using the Fahn-Tolosa-Marin tremor rating scale (TRS).

Results At 3-month follow-up, both patients demonstrated significant improvement in tremor symptoms subjectively and according to the TRS (75% for both). Patients also had substantial improvements in their QOL (32.54% and 38%) according to the 39-item PD questionnaire. Both patients underwent uncomplicated MRIg-LITT thalamotomy.

Conclusions In patients with medically intractable PD tremor who are unsuitable candidates for DBS, thalamotomy utilizing a stereotactic robot, intraoperative electrophysiological testing, and laser ablation with real-time MRI guidance may be a viable treatment option. However, further studies with larger sample sizes and longer follow-up periods are necessary to confirm these preliminary results.

Dissociation of Broca’s area from Broca’s aphasia in patients undergoing neurosurgical resections

J Neurosurg 138:847–857, 2023

Broca’s aphasia is a syndrome of impaired fluency with retained comprehension. The authors used an unbiased algorithm to examine which neuroanatomical areas are most likely to result in Broca’s aphasia following surgical lesions.

METHODS Patients were prospectively evaluated with standardized language batteries before and after surgery. Broca’s area was defined anatomically as the pars opercularis and triangularis of the inferior frontal gyrus. Broca’s aphasia was defined by the Western Aphasia Battery language assessment. Resections were outlined from MRI scans to construct 3D volumes of interest. These were aligned using a nonlinear transformation to Montreal Neurological Institute brain space. A voxel-based lesion-symptom mapping (VLSM) algorithm was used to test for areas statistically associated with Broca’s aphasia when incorporated into a resection, as well as areas associated with deficits in fluency independent of Western Aphasia Battery classification. Postoperative MRI scans were reviewed in blinded fashion to estimate the percentage resection of Broca’s area compared to areas identified using the VLSM algorithm.

RESULTS A total of 289 patients had early language evaluations, of whom 19 had postoperative Broca’s aphasia. VLSM analysis revealed an area that was highly correlated (p < 0.001) with Broca’s aphasia, spanning ventral sensorimotor cortex and supramarginal gyri, as well as extending into subcortical white matter tracts. Reduced fluency scores were significantly associated with an overlapping region of interest. The fluency score was negatively correlated with fraction of resected precentral, postcentral, and supramarginal components of the VLSM area.

CONCLUSIONS Broca’s aphasia does not typically arise from neurosurgical resections in Broca’s area. When Broca’s aphasia does occur after surgery, it is typically in the early postoperative period, improves by 1 month, and is associated with resections of ventral sensorimotor cortex and supramarginal gyri.

 

Nucleus accumbens: a systematic review of neural circuitry and clinical studies in healthy and pathological states

J Neurosurg 138:337–346, 2023

The nucleus accumbens (NAcc) of the ventral striatum is critically involved in goal- and reward-based behavior. Structural and functional abnormalities of the NAcc or its associated neural systems are involved in neurological and psychiatric disorders. Studies of neural circuitry have shed light on the subtleties of the structural and functional derangements of the NAcc across various diseases. In this systematic review, the authors sought to identify human studies involving the NAcc and provide a synthesis of the literature on the known circuity of the NAcc in healthy and diseased states, as well as the clinical outcomes following neuromodulation.

METHODS A systematic review was conducted using the PubMed, Embase, and Scopus databases. Neuroimaging studies that reported on neural circuitry related to the human NAcc with sample sizes greater than 5 patients were included. Demographic data, aim, design and duration, participants, and clinical and neurocircuitry details and outcomes of the studies were extracted.

RESULTS Of 3591 resultant articles, 123 were included. The NAcc and its corticolimbic connections to other brain regions, such as the prefrontal cortex, are largely involved in reward and pain processes, with distinct functional circuitry between the shell and core in healthy patients. There is heterogeneity between clinical studies with regard to the NAcc indirect targeting coordinates, methods for postoperative confirmation, and blinded trial design. Neuromodulation studies provided promising clinical results in the context of addiction and substance misuse, obsessive-compulsive disorder, and mood disorders. The most common complications were impaired memory or concentration, and a notable serious complication was hypomania.

CONCLUSIONS The functional diversity of the NAcc highlights the importance of studying the NAcc in healthy and pathological states. The results of this review suggest that NAcc neuromodulation has been attempted in the management of diverse psychiatric indications. There is promising, emerging evidence that the NAcc may be an effective target for specific reward- or pain-based pathologies with a reasonable risk profile.

Long-Term Outcomes of Bilateral Subthalamic Nucleus Deep Brain Stimulation for Patients With Parkinson’s Disease: 10 Years and Beyond

Neurosurgery 91:726–733, 2022

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) represents an effective treatment for severe Parkinson’s disease (PD), but little is known about the long-term benefit.

OBJECTIVE: To investigate the survival rate and long-term outcome of DBS.

METHODS: We investigated all 81 patients including 37 males and 44 females who underwent bilateral STN DBS from March 2005 to March 2008 at a single institution. The current survival status of the patients was investigated. Preoperative and postoperative follow-up assessments were analyzed.

RESULTS: The mean age at the time of surgery was 62 (range 27-82) years, and the median clinical follow-up duration was 145 months. Thirty-five patients (43%) died during the follow-up period. The mean duration from DBS surgery to death was 110.46 ± 40.8 (range 0-155) months. The cumulative survival rate is as follows: 98.8 ± 1.2% (1 year), 95.1 ± 2.4% (5 years), and 79.0 ± 4.5% (10 years). Of the 81 patients, 33 (40%) were ambulatory up to more than 11 years. The Unified Parkinson’s Disease Rating Scale (UPDRS) score was significantly improved until 5 years after surgery although it showed a tendency to increase again after 10 years. The patient group with both electrodes located within the STN showed a higher rate of survival and maintained ambulation.

CONCLUSION: STN DBS is a safe and effective treatment for patients with advanced PD. This study based on the long-term follow-up of large patient populations can be used to elucidate the long-term fate of patients who underwent bilateral STN DBS for PD.

A population-normalized tractographic fiber atlas of the anterior limb of the internal capsule: relevance to surgical neuromodulation

J Neurosurg 137:1278–1288, 2022

The anterior limb of the internal capsule (ALIC) is a white matter highway that connects several subcortical structures to the prefrontal cortex. Although surgical interventions in the ALIC have been used to treat a number of psychiatric illnesses, there is significant debate regarding what fibers are targeted for intervention. This debate is partially due to an incomplete understanding of connectivity in the region.

METHODS To better understand this complex structure, the authors employed a novel tractography-based approach to examine how fibers from the thalamus and subthalamic nucleus (STN) traverse the ALIC. Furthermore, the authors analyzed connections from the medial dorsal nucleus, anterior nucleus, and ventral anterior nucleus of the thalamus.

RESULTS The results showed that there is an organizational gradient of thalamic fibers medially and STN fibers laterally in the ALIC that fades more anteriorly. These findings, in combination with the known corticotopic organization described by previous studies, allow for a more thorough understanding of the organization of the white matter fibers in the ALIC.

CONCLUSIONS These results are important for understanding and targeting of neuromodulatory therapies in the ALIC and may help explain why differences in therapeutic effect are observed for different areas of the ALIC.

Radiological identification of the globus pallidus motor subregion in Parkinson’s disease

J Neurosurg 137:175–183, 2022

Globus pallidus (GP) lesioning improves motor symptoms of Parkinson’s disease (PD) and is occasionally associated with nonmotor side effects. Although these variable clinical effects were shown to be site-specific within the GP, the motor and nonmotor subregions have not been distinguished radiologically in patients with PD. The GP was recently found to have a distinct radiological signature on diffusion MRI (dMRI), potentially related to its unique cellular content and organization (or tissue architecture). In this study, the authors hypothesize that the magnitude of water diffusivity, a surrogate for tissue architecture, will radiologically distinguish motor from nonmotor GP subregions in patients with PD. They also hypothesize that the therapeutic focused ultrasound pallidotomy lesions will preferentially overlap the motor subregion.

METHODS Diffusion MRI from healthy subjects (n = 45, test-retest S1200 cohort) and PD patients (n = 33) was parcellated based on the magnitude of water diffusivity in the GP, as measured orientation distribution function (ODF). A clustering algorithm was used to identify GP parcels with distinct ODF magnitude. The individual parcels were used as seeds for tractography to distinguish motor from nonmotor subregions. The locations of focused ultrasound lesions relative to the GP parcels were also analyzed in 11 patients with PD.

RESULTS Radiologically, three distinct parcels were identified within the GP in healthy controls and PD patients: posterior, central, and anterior. The posterior and central parcels comprised the motor subregion and the anterior parcel was classified as a nonmotor subregion based on their tractography connections. The focused ultrasound lesions preferentially overlapped with the motor subregion (posterior more than central). The hotspots for motor improvement were localized in the posterior GP parcel.

CONCLUSIONS Using a data-driven approach of ODF-based parcellation, the authors radiologically distinguished GP motor subregions in patients with PD. This method can aid stereotactic targeting in patients with PD undergoing surgical treatments, especially focused ultrasound ablation.

Tractography-Based Surgical Targeting for Thalamic Deep Brain Stimulation: A Comparison of Probabilistic vs Deterministic Fiber Tracking of the Dentato-Rubro-Thalamic Tract

Neurosurgery 90:419–425, 2022

The ventral intermediate (VIM) thalamic nucleus is the main target for the surgical treatment of refractory tremor. Initial targeting traditionally relies on atlas-based stereotactic targeting formulas, which only minimally account for individual anatomy. Al- ternative approaches have been proposed, including direct targeting of the dentato-rubro- thalamic tract (DRTT), which, in clinical settings, is generally reconstructed with deterministic tracking. Whether more advanced probabilistic techniques are feasible on clinical-grade magnetic resonance acquisitions and lead to enhanced reconstructions is poorly understood.

OBJECTIVE: To compare DRTT reconstructed with deterministic vs probabilistic tracking. METHODS: Thisisaretrospectivestudyof19patientswithessentialtremorwhounderwentdeep brain stimulation (DBS) with intraoperative neurophysiology and stimulation testing. We assessed the proximity of the DRTT to the DBS lead and to the active contact chosen based on clinical response.

RESULTS: In the commissural plane, the deterministic DRTT was anterior (P<104)and  < 104) to the DBS lead. By contrast, although the probabilistic DRTT was also anterior to the lead (P < 104), there was no difference in the mediolateral dimension (P = .5). Moreover, the 3- dimensional Euclidean distance from the active contact to the probabilistic DRTT was smaller vs the distance to the deterministic DRTT (3.32 ± 1.70 mm vs 5.01 ± 2.12 mm; P < 104).

CONCLUSION: DRTT reconstructed with probabilistic fiber tracking was superior in spatial proximity to the physiology-guided DBS lead and to the empirically chosen active contact. These data inform strategies for surgical targeting of the VIM.

Direct targeting of the ventral intermediate nucleus of the thalamus in deep brain stimulation for essential tremor

J Neurosurg 136:662–671, 2022

The ventral intermediate nucleus of the thalamus (VIM) is an effective target for deep brain stimulation (DBS) to control symptoms related to essential tremor. The VIM is typically targeted using indirect methods, although studies have reported visualization of the VIM on proton density–weighted MRI. This study compares the outcomes between patients who underwent VIM DBS with direct and indirect targeting.

METHODS Between August 2013 and December 2019, 230 patients underwent VIM DBS at the senior author’s institution. Of these patients, 92 had direct targeting (direct visualization on proton density 3-T MRI). The remaining 138 patients had indirect targeting (relative to the third ventricle and anterior commissure–posterior commissure line).

RESULTS Coordinates of electrodes placed with direct targeting were significantly more lateral (p < 0.001) and anterior (p < 0.001) than those placed with indirect targeting. The optimal stimulation amplitude for devices measured in voltage was lower for those who underwent direct targeting than for those who underwent indirect targeting (p < 0.001). Patients undergoing direct targeting had a greater improvement only in their Quality of Life in Essential Tremor Questionnaire hobby score versus those undergoing indirect targeting (p = 0.04). The direct targeting group had substantially more symptomatic hemorrhages than the indirect targeting group (p = 0.04). All patients who experienced a postoperative hemorrhage after DBS recovered without intervention.

CONCLUSIONS Patients who underwent direct VIM targeting for DBS treatment of essential tremor had similar clinical outcomes to those who underwent indirect targeting. Direct VIM targeting is safe and effective.

Distinct approaches to language pathway tractography

J Neurosurg 136:589–600, 2022

Visualization of subcortical language pathways by means of diffusion tensor imaging–fiber tracking (DTIFT) is evolving as an important tool for surgical planning and decision making in patients with language-suspect brain tumors. Repetitive navigated transcranial magnetic stimulation (rTMS) cortical language mapping noninvasively provides additional functional information. Efforts to incorporate rTMS data into DTI-FT are promising, but the lack of established protocols makes it hard to assess clinical utility. The authors performed DTI-FT of important language pathways by using five distinct approaches in an effort to evaluate the respective clinical usefulness of each approach.

METHODS Thirty patients with left-hemispheric perisylvian lesions underwent preoperative rTMS language mapping and DTI. FT of the principal language tracts was conducted according to different strategies: Ia, anatomical landmark based; Ib, lesion-focused landmark based; IIa, rTMS based; IIb, rTMS based with postprocessing; and III, rTMS enhanced (based on a combination of structural and functional data). The authors analyzed the respective success of each method in revealing streamlines and conducted a multinational survey with expert clinicians to evaluate aspects of clinical utility.

RESULTS The authors observed high usefulness and accuracy ratings for anatomy-based approaches (Ia and Ib). Postprocessing of rTMS-based tractograms (IIb) led to more balanced perceived information content but did not improve the usefulness for surgical planning and risk assessment. Landmark-based tractography (Ia and Ib) was most successful in delineating major language tracts (98% success), whereas rTMS-based tractography (IIa and IIb) frequently failed to reveal streamlines and provided less complete tractograms than the landmark-based approach (p < 0.001). The lesionfocused landmark-based (Ib) and the rTMS-enhanced (III) approaches were the most preferred methods.

CONCLUSIONS The lesion-focused landmark-based approach (Ib) achieved the best ratings and enabled visualization of the principal language tracts in almost all cases. The rTMS-enhanced approach (III) was positively evaluated by the experts because it can reveal cortico-subcortical connections, but the functional relevance of these connections is still unclear. The use of regions of interest derived solely from cortical rTMS mapping (IIa and IIb) leads to cluttered images that are of limited use in clinical practice.

Brain Structural Changes in Carpal Tunnel Syndrome Patients

Neurosurgery 89:978–986, 2021

Carpal tunnel syndrome (CTS) is a common peripheral entrapment neuropathy. However, CTS-related changes of brain structural covariance and structural covariance networks (SCNs) patterns have not been clearly studied. OBJECTIVE: To explore CTS-related brain changes from perspectives of structural connectivity and SCNs.

METHODS: Brain structural magnetic resonance images were acquired from 27 CTS patients and 19 healthy controls (HCs). Structural covariance and SCNs were constructed based on gray matter volume. The global network properties including clustering coefficient (Cp), characteristic path length (Lp), small-worldness index, global efficiency (Eglob), and local efficiency (Eloc) and regional network properties including degree, betweenness centrality (BC), and Eloc of a given node were calculated with graph theoretical analysis.

RESULTS: Compared with HCs, the strength of structural connectivity between the dorsal anterior insula and medial prefrontal thalamus decreased (P < .001) in CTS patients. There was no intergroup difference of area under the curve for Cp, Lp¸Eglob, and Eloc (all P>.05). The real-world SCN of CTS patients showed a small-world topology ranging from 2% to 32%. CTS patients showed lower nodal degrees of the dorsal anterior insula and medial prefrontal thalamus, and higher Eloc of a given node and BC in the lateral occipital cortex (P < .001) and the dorsolateral middle temporal gyrus (P < .001) than HCs, respectively.

CONCLUSION: CTS had a profound impact on brain structures from perspectives of structural connectivity and SCNs.